
© TraceLink Inc. 2009 - 2025 All Rights Reserved

T R A C E L I N K U N I V E R S I T Y

Home
Resources
TraceLink University

Custom XTT Link Actions
Development Guide

Overview

This guide covers the steps necessary to create a custom Link Action. At the end,
you will have a validated Javascript file and a custom transform. With these, you
will work together with the TraceLink team on configuration.

Familiarize yourself with the relevant Link Action terminology and1.
principles.
Use JavaScript to make a direct API connection between an external2.
system and TraceLink to retrieve or send data.
Create a custom transform to map data fields between the two systems.3.
Validate the Link Action using TraceLink’s XTT Link Actions Developer Kit.4.
Upload your Link Action for use.5.

Terminology and Principles

Each custom Link Action abides by the following principles:

Connection is made via API to a single, external system
Data is transmitted either inbound OR outbound
Configured for a single TraceLink instance

https://www.tracelink.com/
https://www.tracelink.com/resources/resource-center
https://www.tracelink.com/resources/tracelink-university

© TraceLink Inc. 2009 - 2025 All Rights Reserved

Configured for a single transaction type

Term Definition

Canonical
TraceLink's system agnostic data format. The canonical data model
allow information to be exchanged with any partner on the network,
regardless of their data format.

Custom Transform Data mapping of external systems with TraceLink canonicals.

Inbound Link Action Facilitates transferring transaction data from an external system,
via APIs, into TraceLink's canonical format.

Outbound Link Action Facilitates transferring transaction data, via API, from TraceLink's
canonical format into one needed for an external system.

Transaction Type B2B messages relating to a business process (e.g. purchase orders,
invoices, etc.).

Standard Link
Actions

Link Actions built and maintained by TraceLink to connect to
common, non-customized, third party systems.

Custom Link Actions Link Actions built for external system not covered by Standard Link
Actions or systems with customization.

Use the decision tree below to help you determine if you need a standard or
custom Link Action.

* A list of external systems with Standard XTT Link Actions can be found here.

** A list of canonical fields for each transaction type can be found here.

Create a Custom Link Action

At this point you have determined that you need a custom Link Action. If the
external system you want to connect to is not listed on this page, please contact
us by emailing partner-operations [at] tracelink.com (partner-
operations[at]tracelink[dot]com) before proceeding with this guide. We will need to
work with you to configure it in the Link Action backend framework.

This step reviews how to create an inbound or outbound custom Link Action with
JavaScript. The output will be a .js file that returns the JSON payload for the

https://www.tracelink.com/resources/tracelink-university/custom-transforms-development-guide
https://opus.tracelink.com/documentation/prod/en-US/mpc/Content/top_nav/set_up_apis.htm
https://www.tracelink.com/resources/tracelink-university/standard-link-actions-development-guide
https://www.tracelink.com/resources/tracelink-university/standard-link-actions-development-guide
https://www.tracelink.com/resources/tracelink-university/standard-link-actions-development-guide
https://www.tracelink.com/resources/tracelink-university/canonical-reference

© TraceLink Inc. 2009 - 2025 All Rights Reserved

designated transaction type.

Objects and methods available for both inbound and outbound Link Actions:

linkActionContext is the base object passed to provide configuration, rest
methods, and debugging.

 linkActionContext.api.log provides debug logging information:

linkActionContext.api.log(linkActionContext, "string to log");

linkActionContext.api.oAuth2 provides OAuth2.0 authentication capabilities:

linkActionContext.api.oAuth2.get(LinkActionContext linkActionContext,
String url, String header, String payload);

linkActionContext.api.oAuth2.put(LinkActionContext linkActionContext,
String url, String header, String payload);

linkActionContext.api.oAuth2.post(LinkActionContext linkActionContext,
String url, String header, String payload);

linkActionContext.api.oAuth2.patch(LinkActionContext
linkActionContext, String url, String header, String payload);

// Return: {String url, String statusCode, Object header, String body,
String errorString}

linkActionContext.config provides configuration information, specific to a XTT Link
Action’s configuration in the framework. Locate the external system you are
connecting to on this page for relevant configuration details. If the system is not
listed, the TraceLink team will provide you with this information after configuration
in the backend framework.

Inbound Link Actions

Inbound Link Actions fetch data from an external system, via API, and transform it

© TraceLink Inc. 2009 - 2025 All Rights Reserved

into TraceLink’s canonical format. At a high level this entails:

Polling Data: Check if there is new data since last poll
Querying the Records: If there is new data, GET the records after the last
poll time
Fetching Detailed Records: Take the list of records from step two and GET
detailed information about each one. This may require multiple API calls
depending on how data is stored in the external system.
Processing: Prepare the data into JSON format with all retrieved details

cursor is a stringified JSON object that stores the point when the external system's
data was last sent inbound to OPUS. This typically is an epoch timestamp, but
could be anything used to track a point in the data stream like an object ID.

pollForDataInbound is required for inbound link actions to get the given objects
from the external system from the start point defined by the cursor.

function pollForDataInbound(linkActionContext, cursor) {
 // If cursor exists parse it
 cursor = parse(cursor)
 // Set up configurations (URL, record types, etc.)

 // GET purchase orders since last poll time
 purchaseOrders = queryPurchaseOrders(linkActionContext, cursor)
 //return purchase orders

 // Iterate through list of purchase orders and details about each
 for each order in purchaseOrders:
 detailedOrder = fetchPurchaseOrder(linkActionContext, order)

 // Convert into JSON
 postProcess(linkActionContext, cursor, detailedOrder)
}

A sample JavaScript file for inbound NetSuite purchase orders can be found here.

Now that you have your data from the external system in JSON format, you will
need to create a custom transform to map its fields to the Tracelink canonical.

https://github.com/tracelink/xtt-link-actions-sandbox/blob/main/testData/Input/PurchaseOrder/Standard/Inbound/netsuite_purchaseorder_inbound_v5.js

© TraceLink Inc. 2009 - 2025 All Rights Reserved

Outbound Link Actions

Outbound Link Actions fetch data in TraceLink’s canonical format, apply a custom
transform to it, and send the output via API to an external system. At a high level,
this entails:

Preparing the Data: Gather the data you want to send to an external
system
Fetching Additional Identifiers: Sometimes, the data you are sending
needs more information, like unique IDs for certain items (e.g., the currency
or terms used).
Sending the Data: Send data to an external system via API
Handling the Response: After sending the data, check if the operation was
successful or if there was an error.

sendDataOutbound is required for outbound Link Action to make a PUT call with the
given outboundData to send to the external system.

function sendDataOutbound(linkActionContext, outboundData) {

 // Create the URL for the outbound transaction
 const transactionType = 'purchaseorder';
 const uri = linkActionContext.config.url + '/' + transactionType;

 // Set the necessary headers for the API request
 const headers = { 'Content-Type': 'application/json' };

 // Parse the data you want to send
 let outboundDataJson = parse(outboundData);

 // Obtain any necessary identifiers
 outboundDataJson = fetchAndMergeIdentifiers(linkActionContext,
outboundDataJson);

 // Convert the updated outbound data to a string for sending
 const outboundDataString = JSON.stringify(outboundDataJson);

 // Send the outbound data to the external system using a POST
request
 let response =

© TraceLink Inc. 2009 - 2025 All Rights Reserved

linkActionContext.api.oAuth2.post(linkActionContext, uri, headers,
outboundDataString);

 // Check if the response is successful
 if (response.statusCode === '204') {
 return { success: true, message: "Data sent successfully" };
 } else {
 // Handle errors
 logError("Outbound failed: " + response.error);
 return { success: false, error: response.error };
 }
}

A sample JavaScript file for outbound NetSuite purchase orders can be found here.

Best Practices
We highly encourage you to create a generic, service account user in your external
system to make the relevant API calls. This is because it is best practice to only
assign the user access to the data it needs to function.

Creating a Custom Transform

Now that you have connected to an external system, you will need to transform
the data using a custom transform. For inbound Link Actions, this means the data
needs to be transformed from the external system’s format into TraceLink’s
canonical format. For outbound Link Actions, this means data needs to be
transformed from TraceLink’s canonical format into the external system’s format.
At the end of this step you will have a custom transform file, .js or .jar, that maps
data fields between the two systems.

You can find detailed implementation steps in our custom transform development
guide.

Validating a Link Action

This step provides you with a tool to help validate your Link Actions JavaScript and
custom transform are working properly.

https://github.com/tracelink/xtt-link-actions-sandbox/blob/main/testData/Input/PurchaseOrder/Standard/Outbound/netsuite_purchaseorder_outbound_v1.js
https://www.tracelink.com/resources/tracelink-university/custom-transforms-development-guide
https://www.tracelink.com/resources/tracelink-university/custom-transforms-development-guide

© TraceLink Inc. 2009 - 2025 All Rights Reserved

This is done by setting up a local sandbox and using our XTT Link Actions
Developer Kit. Detailed usage documentation can be found within our tooling
guide.

If you encounter any issues with this tool, please email %20partner-operations [at]
tracelink.com (partner-operations[at]tracelink[dot]com).

If you require a tool enhancement, please create an issue directly in the repository.

Now that you have validated your custom Link Action, you can upload it for use.

Upload and Use a Link Action

When you are ready to upload your validated custom Link Action for use, please
send answers to the questions below to %20partner-operations [at] tracelink.com
(partner-operations[at]tracelink[dot]com).

What external system are you connecting to?
Are you sending data inbound or outbound?
If inbound, what is your desired polling frequency? This value must be greater
than the Link Action execution time.

From here, you will receive follow up from the TraceLink team to work with you to:

Assign the xtt-link-actions Enterprise Application to your TraceLink instance
Assign appropriate user roles, detailed below
Upload your Link Action JavaScript and custom transform
Obtain required connection details such as client ID, client secret, URLs, etc.

Role Permissions
Application Administrator Add or Modify an XTT Link Action B2B connections

Member - Standard Access View XTT Link Actions B2B connections
Search and view B2B transactions

Link Action Developer Can upload a Link Action to the Catalog
Link Action Administrator Can promote XTT Link Actions from local to global

https://www.tracelink.com/resources/tracelink-university/xtt-link-actions-developer-kit
https://www.tracelink.com/resources/tracelink-university/xtt-link-actions-developer-kit
https://docs.github.com/en/issues/tracking-your-work-with-issues/creating-an-issue
https://github.com/tracelink/xtt-link-actions-sandbox/issues

© TraceLink Inc. 2009 - 2025 All Rights Reserved

Change Management

Any changes made to the Link Action file or custom transform, require you to go
through the upload steps above. Uploaded changes will overwrite the previous
file(s), unless otherwise specified. If you have any questions about this process
please contact partner-operations [at] tracelink.com (partner-
operations[at]tracelink[dot]com).

Related Content

Link Actions

Pre-Built API connectors to popular enterprise software systems.
View More

https://www.tracelink.com/products/network-platform-enabling-applications/link-actions
https://www.tracelink.com/products/network-platform-enabling-applications/link-actions

© TraceLink Inc. 2009 - 2025 All Rights Reserved

Use Case: XTT Link Actions

Integrate with external systems using Link Actions.
View More

https://www.tracelink.com/resources/tracelink-university/use-case-xtt-link-actions
https://www.tracelink.com/resources/tracelink-university/use-case-xtt-link-actions

© TraceLink Inc. 2009 - 2025 All Rights Reserved

Standard Link Actions Development Guide

Availability and development practices for standard XTT Link Actions.
View More

https://www.tracelink.com/resources/tracelink-university/standard-link-actions-development-guide
https://www.tracelink.com/resources/tracelink-university/standard-link-actions-development-guide

© TraceLink Inc. 2009 - 2025 All Rights Reserved

XTT Link Actions Developer Kit

Configure your development environment.
View More

https://www.tracelink.com/resources/tracelink-university/xtt-link-actions-developer-kit
https://www.tracelink.com/resources/tracelink-university/xtt-link-actions-developer-kit

